
International Journal of Science & Technology ISSN (online): 2250-141X

www.ijst.co.in Vol. 1 Issue 1, November 2011

© Copyright – IJST 2011

23

Noval approach image processing algorithms on hardware

implementation for surveillance systems

K.SivaNagi Reddy

Associate Professor of Swathi Institute of technology and science,
 Hyderabad,

E-Mail:sivanag1979@gmail.com

Dr.Bhanu .M. Bhaskara

Professor &principal of Nexus College of technoly and science,

Hyderabad.

Abstract

FPGAs are often used as implementation platforms for real-time image processing applications

because their structure allows them to exploit spatial and temporal parallelism. Such parallelization is

subject to the processing mode and hardware constraints including limited processing time, limited

access to data and limited resources of the system. These constraints often force the designer to

reformulate the software algorithm in the process of mapping it to hardware. To aid in the process this

paper proposes the approaching of design process to implement hardware patterns which embody

experience and through reuse provide tools for solving particular mapping problems.

Keywords: image processing, real-time, hardware, pipeline, parallelism Field programmable Gate

Arrays.

1. Introduction

Imaging and video applications are one of the

fastest growing sectors of the market today.

Typical application areas include e.g. medical

imaging, CCTV, digital cameras, set-top boxes,

and Machine vision and security surveillance.

As the evolution in these applications

progresses, the demands for technology

innovations tend to grow rapidly over the years.

Driven by the consumer electronics market,

new emerging standards along with increasing

requirements on system performance imposes

great challenges on today’s imaging and video

product development. To meet with the

constantly improved system performance

measured in, e.g., resolution, throughput,

robustness, power consumption and digital

convergence (where a wide range of terminal

devices must process multimedia data streams

including video, audio, GPS, cellular, etc.), new

design methodologies and hardware accelerator

architectures are constantly called for in the

hardware implementation of such systems with

real-time processing power. This thesis tries to

deal with several design issues normally

encountered in hardware implementations of

such image processing systems.

2. Pipelined image processing

International Journal of Science & Technology ISSN (online): 2250-141X

www.ijst.co.in Vol. 1 Issue 1, November 2011

© Copyright – IJST 2011

24

Consider a memory based image processing

system which implements local operators,

defined for a given neighborhood of the

currently processed image pixel Assuming the

region of interest W × H inside the frame buffer

of line width L, a standard way of accessing

pixel f(j, j) is to calculate its address as shown

in the figure. Many processors (especially

DSPs) provide memory address generator

blocks, facilitating this task. Nevertheless, a

more effective way is to set up a pointer to the

memory and provide consecutive accesses with

auto post incrimination (available in most

advanced processors). This resembles the

situation when we receive the image as a

sequential data stream (e.g. from CCD or

CMOS image sensors or USB/Fire

wire/Ethernet devices).In a general case, the

local operator calculates the resulting value of

the pixel g(i, j) on the basis of the values of all

the pixels from the given window, accessible

with constant offsets from the current (central

pixel) pointer. Actually, there is no need for

multiple pixel access

As summing an 8-connected neighborhood of

radius r (a square window of the size

(2r + 1) × (2r + 1), one can create a pipeline

consisting of 2r delay lines (SISO registers) of

the image line length L. The currently accessed

(received, in the case of a serial input data

stream) pixel, together with the outputs of all 2r

delay lines, forms one column of the requested

window (the data are accessible in parallel). In

a general case, a (2r+1)×(2r+1) array of

additional pixel-size registers (forming 2r +1)

SIPO row buffers) provides simultaneous

access to the surrounding pixels. The delay TD

introduced by such a pipeline depends on pixel

sampling period TS, image line period TL and

the neighborhood radius r:

TD = rTL + (r + 1)TS.

In the case of a line containing L pixels with no

blanking period, we have

TD = TS(r(L + 1) + 1).

Any local operator can thus be implemented as

a static function Φ of multiple inputs and one

output:

g(i, j) = Φ(f(i + m, j + n)| − r ≤ m ≤ r ,

−r ≤ n ≤ r) .

The output g(i, j), delayed from the original

data stream by TD, can be used as input data for

the next processing stage of the same form. The

delays of the cascaded procedures accumulate,

but the overall latency remains strictly defined

and constant. Operators that use only one pixel

value to perform the transformation can be

considered as a special case of the local ones,

with the neighborhood radius r = 0. The

implementation is much simpler, as the delay

lines are not needed and we use only one input.

Typically, such transformations are realized via

programmable LUTs (Look Up Tables),

memory arrays addressed by the input value

and Containing the output values for all

possible input values. The presented

implementation concept is suitable for a great

variety of early image processing (linear and

non-linear): filtering (hi- and low-pass,

gradients, edge enhancement, background

subtraction, etc.), segmentation (Thresholding,

clipping, double thresholding, template

matching, etc.), morphology (hit-or-miss,

dilation, erosion, opening, closing, etc.),

parameterization (labeling, moments, moment

invariants, etc.). The implemented procedures

can be cascaded and combined parallel,

forming Fast image preprocessing systems, well

suited to a given task. Note that a brute force

implementation of Φ is not always efficient, or

even possible. Even in the case of the smallest

non-trivial 3×3(r = 1) neighborhood and 8-bit

gray-scale image, Φ requires a 72-bit input

word.

Good results can be obtained via the

decomposition of the operator, which will be

shown next.

3. Filters operators

A special class of local operators (both linear

and nonlinear) is separable ones. The problem

size decreases significantly if the operator Φ

can be decomposed in such a manner that every

column is processed independently and the

International Journal of Science & Technology ISSN (online): 2250-141X

www.ijst.co.in Vol. 1 Issue 1, November 2011

© Copyright – IJST 2011

25

partial results for the columns are composed to

form the result.

Consider the so-called Gaussian filter defined

by the convolution kernel:

1 2 1

2 4 2

1 2 1

It is widely used for image smoothing (low-

pass filtering), as it is easily normalized by 16

(bit shift instead of division). Moreover, to

obtain a Gaussian filter of a greater radius, we

can compose (cascade) two Gaussian

filters:Gr1 _ Gr2 = Gr1+r2,

which implies that it is sufficient to implement

G1. Introducing a three-input operator Γ:

Γ(a, b, c) = a + 2b + c

we can calculate partial results γ(i, j)

γ(i, j) = Γ(f(i, j − 1), f(i, j), f(i, j + 1)).

The final result g(i, j) is calculated in another Γ

block, using γ(・, j) as inputs:

g(i, j) = Γ(γ(i − 1, j), γ(i, j), γ(i + 1, j)).

Instead of a function with a 72-bit input, we

need two copies of a function with a 24-bit

input.

Local minimum and local maximum operators

on large windows are used for finding

lower/upper image envelopes: lmin(lmax) ,

lmax(lmin),

which are very useful in background

subtraction methods. Both the operators are

separable. Every neighborhood column can be

minimized in the pipeline:

μ(i, j) = MIN2r+1 - f(i, j−r), . . . ,

f(i, j), . . . , f(i, j+r),

and the final result g(i, j) is the minimum of

2r+1 partial results (Fig. 3):

g(i, j) = MIN2r+1_ μ(i, j−r), . . . ,

μ(i, j), . . . , μ(i, j+r).

Thus the decomposition results in reducing the

problem size from (2r + 1)2 to 2(2r + 1).

4. Weighted Order Statistics filter

The Weighted Order Statistics (WOS) filter

applies weights to each of the inputs in the

window. The center block is assigned a weight

of 3, while the four corners are assigned a

weight of 1, and the remaining blocks a weight

of 2. The WOS algorithm is given by the

following equation:

 W1*(n1-1,n2-1)

 W2*(n1,n2-1)

 W3*(n1 +1,n2-1)

 Y(n1,n2)=MED W4*(n1-1,n2)

 W5*(n1,n2)

 W6*(n1+1,n2)

 W7*(n1-1,n2+1)

 W8*(n1+1,n2-1)

where 'w x' means x repeated w times. For

example,4

3 means 3 repeated 4 times. There

are three parts in the WOS filter that the

information goes through: weight adding,

sorting, and weighted ordering. The values,

from the universal filter registers, first get a

weight value assigned to it in relation to its

window position. This is comprised of a set of

nine adders that places a 2-bit weight value in

front of the 8-bit window value, creating a

10-bit number. These nine 10-bit values then

move to the registers in the sorting section of

the WOS filter. The newly weighted values are

now placed into a second set of registers. These

registers are used to store the data as it is being

sorted. The sorting section uses eight

comparators to sort the values, using only the

last eight bits. These comparators compare two

numbers at a time, resulting in a high value and

a low value. Since there are nine values that

need to be compared, the eight comparators are

broken into two sets of 4 comparators.

The first set compare register 1 through register

8, and the second set compare register 2

through register 9. This allows

an odd number of values to be sorted.

Multiplexers determine which value is allowed

back into the register, depending on which set

of comparators is being used.

International Journal of Science & Technology ISSN (online): 2250-141X

www.ijst.co.in Vol. 1 Issue 1, November 2011

© Copyright – IJST 2011

26

Basically, what this hardware does is compare

the values stored in two adjacent registers, finds

the high value and the low value, and swaps the

values when necessary. This process continues

until the values are sorted from highest to

lowest. The weighted order section is the last

section of the WOS filter. The first two bits of

the values are checked for their weight values.

Recall that the weight of a number represents

how many times a number appears in a

sequence of numbers. A weight of two means

the number will appear twice. For the WOS

filter, the weight represents how many times a

value will be entered into the shift register. The

shift register is made of fifteen 8-bit registers

that are wired together so that values can only

enter through register 1. When another value

goes to register 1, the value in register 1 gets

shifted down to

register 2. This continues until all fifteen

registers have values. Once all the values have

been placed in the shift register, the WOS filter

is finished, and the final weighted rank can be

output, so it can be a selection for the universal

filter. A clock is used for the WOS filter so that

the sorting section and the weighted ordering

section changes properly. To completely obtain

an output from the WOS filter takes 20 clock

cycles, which makes this the critical path for

the universal filter. The next slowest filter (the

rational filter) takes less than half the number of

clock cycles. This worst case scenario takes

22.039ns to complete.

Figure : 1 Block diagram of the Weighted

Order Statistics (WOS) filter

5. Convolution filters

Linear local operators are in general performed

by convolution with a given kernel of radius r.

Consider the one dimensional example:

g(i)=∑ ak f(i+k) k from –r to r

Where ak are kernel elements (weights).

implementation of the convolution kernels for

many linear operators requires taking the above

constraints into account. For example, a simple

3 × 3 averaging kernel:

 1 1 1

1/9 1 1 1

 1 1 1

Can be approximated by

 57 57 57

1/2
9

 57 57 57

 57 57 57

The normalization of the operator (division by

9) was replaced by shifting the result to the

right by 9 bits (division by 512). Appropriate

weights (−128 ≤ 57 ≤ 127) were applied.

Another example can be a rotation-invariant 3

× 3 Laplacian:

 1 4 1 5 22 5

1/6 4 -20 4 ≈ 1/2
5
 22 -108 22

 1 4 1 5 22 5

The post-processor contains a programmable

LUT, which offers a possibility to implement

linear and nonlinear point-based operations

(e.g., negation, gamma correction).

6. HARDWARE IMPLEMENTATION

(FPGA)

6.1. Introduction:
This report takes a set of macro cells suitable for

designing self-timed systems and a library already

created for the Actel field programmable gate

arrays, and presents a library for the Xilinx FPGA.

The reasons for using a two-phase transition

signaling protocol for control and a bundled

protocol for data paths, and an introduction to the

self-timed elements have already been detailed in

papers .The methods of implementation of the self-

timed elements on the XC4003 FPGA, and the

limitations of its basic structure that were

encountered when designing the cell set will be our

International Journal of Science & Technology ISSN (online): 2250-141X

www.ijst.co.in Vol. 1 Issue 1, November 2011

© Copyright – IJST 2011

27

main concern. Some results including the area

covered by and the delay through each self-timed

element will be provided.

6.2. Xilinx XC4000 FPGA

Xilinx FPGA performs the function of a custom LSI

circuit using look-up tables, and has a row of logic

cells (Configurable Logic Blocks, CLBs)

interspersed with routing channels. It is user-

programmable and re-programmable in a system.

The CLB has thirteen inputs and four outputs which

provide access to the function generators and flip-

flops .Nine of the thirteen inputs are used by the

function generators, while the other four are used

only by the flip flops. Two of the outputs are

clocked, while the other two are not. The structure

of the CLB, shown in Figure 1, is complex

compared to the Actel basic module. The CLB

structure controls the properties of our cell set, both

area and time, as it is the basis for all the macros in

the library. The XC4003, of the 4000 series, has

3000 gates, a 10x10 array of these CLBs, 80 I/O

Blocks (IOBs) and a hierarchy of interconnect lines

to route all of them together.

6.3. Implementation

When designing the elements, it had to be

guaranteed that on programming them onto the

FPGA they were partitioned, placed and routed

appropriately, so that their operation is not altered in

any way. Therefore, the self-timed elements that

occupied more than one CLB had to be made into

Hard Macros and the ones that occupied only one

CLB had to be constrained to specific function

generators. Hard macros improve rout ability and

performance. They can only be made up of CLBs,

no routing will be included and they should be

rectangular for the PPR program, i.e. the CLBs that

the self-timed element occupies should be arranged

so that they fit into a rectangle area to minimize

wastage of resources. A hard macro is created by

running the HMGEN program on the *.lca file. This

file can be created by the XACT Design Editor

(XDE) or by running the XMAKE program on a

schematic from Work view (schematic capture

program used in designing the cell set). The major

drawback of using Xilinx for this cell set or using it

in self timed design was the lack of control over the

routing, which can make the bundling constraint

harder to guarantee.

Consequently, the correct operation of the self-

timed elements cannot be assured. The Xilinx CLB

structure is large and complex compared to, for

example, the Actel basic module, and was thus

harder to use to full capacity when implementing

the self-timed elements. For example, the flip-flops

and their clocked outputs were never used in

designing any of the elements. Most of the self-

timed elements contain some kind of feedback for

memory. This was difficult to implement using the

Xilinx CLB as it did not allow local feedback and

all feedback had to be outside the CLB.

The necessity for more outputs per CLB arose, as

the flip-flop outputs could not be used without an

additional clock input to the element. A third

function generator, H, inside a CLB could have

been more useful, if it had more inputs independent

of the other function generators and had two

unclocked outputs. Another limitation was the

maximum number of inputs to a CLB, although

increasing this would make the CLB bigger

The CCL circuit has been implemented for

Xilinx XC4000 series FPGAs. The Threshold

block is bit parallel, and uses dedicated fast

carry logic; it is highly scalable. A 16 bit

threshold block occupies 9 CLBs. The Initial

Labelling block occupies 3 CLBs per bit. The

non-zero maximum unit occupies 14 CLBs

whereas the other maximum units occupy 4

CLBs. The line buffer is implemented using

XC4000 Select-RAM
TM

. An N pixel line buffer

occupies N/2 +2 CLBs. The whole CCL circuit

has been implemented in an XC4010E-1 FPGA

chip (20 by 20 CLBs). For a 256 by 256 image,

it fits easily on to the XC4010E.

7. Results Obtained

International Journal of Science & Technology ISSN (online): 2250-141X

www.ijst.co.in Vol. 1 Issue 1, November 2011

© Copyright – IJST 2011

28

We currently support the color to grayscale

conversion algorithm, convolution algorithm

and histogram. The color to grayscale

conversion and the histogram runs without any

constraints on the size of image. Convolution

algorithm can have limited width.

7.1 Colors to Grayscale

Each pixel of the image contains three bytes

representing each color. To obtain a grayscale

image, we have to average the color value for

each pixel. The program buffers 64 consecutive

pixels, calculates the average and sends the new

color values of each pixel to the computer

through the USB cable. The program does not

impose any size limits on the image, but larger

images take more time to produce results.

Shown below is an example input image and

the result of gray scale conversion.

7.2 Histogram

The histogram program takes a color image as

input. It calculates the number of pixels

with a particular color value of the three colors

in R-G-B order. For each color, an array of 256

locations is created and the number of pixels, in

the entire image, of a particular color level is

recorded in the respective array. This

information is pushed to the USB cable starting

from number of pixels with color value equal to

zero in the R-G-B order.

7.3 Sobel Edge Detection

We have applied two Sobel filters one after the

other to perform edge detection in both

directions. For this, we modified our

convolution algorithm to do the same

computation twice. However, since we did not

have a square root function, we had to

approximate the merging of two filters using

simple addition operator. We have some errors

in the results we obtained.

7.4 Convolution

The convolution program reads the

convolution mask from the Flash and reads the

amount of shift required to approximate the

division operation. Originally, we had put

independent statements inside par blocks, but

we saw drastic improvements in the compile

time when the par was removed. The mask is

applied over the image starting

from the first row. Remember that since BMP

images are stored starting from the bottom, the

first row is the bottommost row.

The program buffers three consecutive rows

and then applied the convolution mask on new

columns from left to right. The result of the

convolution is stored in the center row left

pixel. Due to this, the output image is shifted

to the left by one pixel. The mask

does not convolute with the last one or two

columns depending upon whether the width

of the image is a multiple of three (the mask

size). After the result of one row is available, it

is returned to the computer through the USB.

An inherent inefficiency in the program is

present because we are buffering three rows at a

time and then next time, we again buffer two of

these rows. This improvement is left for future

work.

The results for two different masks are shown

below. The first one is the original

image, the second one is Gaussian smoothened

and the third is smoothened by an all ones

mask. The third figure is lighter because we

International Journal of Science & Technology ISSN (online): 2250-141X

www.ijst.co.in Vol. 1 Issue 1, November 2011

© Copyright – IJST 2011

29

have approximated the division-by-nine with a

shift-by-three.

8. Conclusions

The pipelined architecture implemented in

hardware, especially in programmable logic

devices, provides a constant latency of the

image processing path, which fulfills the main

condition of real-time systems. Implementing

the procedures is well supported by widespread

design tools (VHDL compilers, libraries, etc.).

Low power consumption and small size of the

devices encourage constructors to put the

preprocessor into the image sensing unit. The

cost of the image processing hardware is

relatively low, and will decrease with FPGA

chips enhancement. In the case of remote vision

systems, this can lead to reducing the

bandwidth between the vision-based sensor and

the host (e.g., a robot controller). Moreover, the

possibility to implement selected

microprocessor and FPGA provides means of

implementing the required low level post-

processing and additional, high level

procedures (image analysis, pattern recognition,

etc.).

References

(1) Dudani S., Breeding K. and McGhee R.

(1977). Aircraft identification by moment

invariants, IEEE Transactions on. Computers,

26(1):39-46

(2) http://www.datasheetcatalog.com.

Xilinx, Inc. (2007). Spartan-3A FPGA family:

Complete Data Sheet, DS610,

(3) http://www.datasheetcatalog.com.

(4) Drzazga A., Hajdul J., Malec J. and Wnuk

M. (1983). Hardware image preprocessor,

Technical Report, Wrocław University of

Technology (in Polish).

(5) SGS-THOMSON Microelectronics (1994).

IMSA110 Image and Signal Processing Sub-

system,

(6) S. K. Mitra and Giovanni L. Sicuranza, eds.

Nonlinear Image Processing, Academic Press,

San Diego, 2001.

(7) A. M. Grigoryan, "Mixed Median Filters

and Their Properties," Proceedings of SPIE

Nonlinear Image ProcessingVIII, vol. 3026,

February 1997, pp. 8-20.

(7) L. Breveglieri and V. Piuri, "Digital Median

Filters, "Journal of VLSI Signal Processing

Systems for Signal, Image and Video

Technology, vol. 31, no. 3, July 2002, pp. 191-

206.

(8)K. Egiazarian, O. Vainio, and J. T. Astola,

"Implementation of Cascaded and Recursive

Stack Filters," Circuit Systems and Signal

Processing, vol. 15, no. 1, 1996, pp. 93-111.

(9) S.S.Erdongan, Abdul Wahab, T. H. Hong.

“VHDL Modeling and Simulation of the Back-

Propagation Algorithm and its Mapping to the

PM”. IEEE 1993 Custom

Integrated Circuits conference.

(10) Aldec, “Aldec-HDLTM Series User Guide

Version 4.1”, August 2000.

