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Abstract 

 

FPGAs are often used as implementation platforms for real-time image processing applications 

because their structure allows them to exploit spatial and temporal parallelism. Such parallelization is 

subject to the processing mode and hardware constraints including limited processing time, limited 

access to data and limited resources of the system. These constraints often force the designer to 

reformulate the software algorithm in the process of mapping it to hardware. To aid in the process this 

paper proposes the approaching of design process to implement hardware patterns which embody 

experience and through reuse provide tools for solving particular mapping problems. 
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1. Introduction 

 

Imaging and video applications are one of the 

fastest growing sectors of the market today. 

Typical application areas include e.g. medical 

imaging, CCTV, digital cameras, set-top boxes, 

and Machine vision and security surveillance. 

As the evolution in these applications 

progresses, the demands for technology 

innovations tend to grow rapidly over the years. 

Driven by the consumer electronics market, 

new emerging standards along with increasing 

requirements on system performance imposes 

great challenges on today’s imaging and video 

product development. To meet with the 

constantly improved system performance 

measured in, e.g., resolution, throughput, 

robustness, power consumption and digital 

convergence (where a wide range of terminal 

devices must process multimedia data streams 

including video, audio, GPS, cellular, etc.), new 

design methodologies and hardware accelerator 

architectures are constantly called for in the 

hardware implementation of such systems with 

real-time processing power. This thesis tries to 

deal with several design issues normally 

encountered in hardware implementations of 

such image processing systems. 

 

2. Pipelined image processing 
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Consider a memory based image processing 

system which implements local operators, 

defined for a given neighborhood of the 

currently processed image pixel Assuming the 

region of interest W × H inside the frame buffer 

of line width L, a standard way of accessing 

pixel f(j, j) is to calculate its address as shown 

in the figure. Many processors (especially 

DSPs) provide memory address generator 

blocks, facilitating this task. Nevertheless, a 

more effective way is to set up a pointer to the 

memory and provide consecutive accesses with 

auto post incrimination (available in most 

advanced processors). This resembles the 

situation when we receive the image as a 

sequential data stream (e.g. from CCD or 

CMOS image sensors or USB/Fire 

wire/Ethernet devices).In a general case, the 

local operator calculates the resulting value of 

the pixel g(i, j) on the basis of the values of all 

the pixels from the given window, accessible 

with constant offsets from the current (central 

pixel) pointer. Actually, there is no need for 

multiple pixel access 

As summing an 8-connected neighborhood of 

radius r (a square window of the size 

(2r + 1) × (2r + 1), one can create a pipeline 

consisting of 2r delay lines (SISO registers) of 

the image line length L. The currently accessed 

(received, in the case of a serial input data 

stream) pixel, together with the outputs of all 2r 

delay lines, forms one column of the requested 

window (the data are accessible in parallel). In 

a general case, a (2r+1)×(2r+1) array of 

additional pixel-size registers (forming 2r +1) 

SIPO row buffers) provides simultaneous 

access to the surrounding pixels. The delay TD 

introduced by such a pipeline depends on pixel 

sampling period TS, image line period TL and 

the neighborhood radius r: 

TD = rTL + (r + 1)TS. 

In the case of a line containing L pixels with no 

blanking period, we have 

TD = TS(r(L + 1) + 1). 

Any local operator can thus be implemented as 

a static function Φ of multiple inputs and one 

output: 

g(i, j) = Φ(f(i + m, j + n)| − r ≤ m ≤ r , 

−r ≤ n ≤ r) . 

The output g(i, j), delayed from the original 

data stream by TD, can be used as input data for 

the next processing stage of the same form. The 

delays of the cascaded procedures accumulate, 

but the overall latency remains strictly defined 

and constant. Operators that use only one pixel 

value to perform the transformation can be 

considered as a special case of the local ones, 

with the neighborhood radius r = 0. The 

implementation is much simpler, as the delay 

lines are not needed and we use only one input. 

Typically, such transformations are realized via 

programmable LUTs (Look Up Tables), 

memory arrays addressed by the input value 

and Containing the output values for all 

possible input values. The presented 

implementation concept is suitable for a great 

variety of early image processing (linear and 

non-linear): filtering (hi- and low-pass, 

gradients, edge enhancement, background 

subtraction, etc.), segmentation (Thresholding, 

clipping, double thresholding, template 

matching, etc.), morphology (hit-or-miss, 

dilation, erosion, opening, closing, etc.), 

parameterization (labeling, moments, moment 

invariants, etc.). The implemented procedures 

can be cascaded and combined parallel, 

forming Fast image preprocessing systems, well 

suited to a given task. Note that a brute force 

implementation of Φ is not always efficient, or 

even possible. Even in the case of the smallest 

non-trivial 3×3(r = 1) neighborhood and 8-bit 

gray-scale image, Φ requires a 72-bit input 

word. 

Good results can be obtained via the 

decomposition of the operator, which will be 

shown next. 

 

3. Filters operators 

 
A special class of local operators (both linear 

and nonlinear) is separable ones. The problem 

size decreases significantly if the operator Φ 

can be decomposed in such a manner that every 

column is processed independently and the 
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partial results for the columns are composed to 

form the result. 

Consider the so-called Gaussian filter defined 

by the convolution kernel: 

 
1    2    1 

2    4   2 

1    2   1 

It is widely used for image smoothing (low-

pass filtering), as it is easily normalized by 16 

(bit shift instead of division). Moreover, to 

obtain a Gaussian filter of a greater radius, we 

can compose (cascade) two Gaussian 

filters:Gr1 _ Gr2 = Gr1+r2, 

which implies that it is sufficient to implement 

G1. Introducing a three-input operator Γ: 

Γ(a, b, c) = a + 2b + c 

we can calculate partial results γ(i, j) 

γ(i, j) = Γ(f(i, j − 1), f(i, j), f(i, j + 1)). 

The final result g(i, j) is calculated in another Γ 

block, using γ(・, j) as inputs: 

g(i, j) = Γ(γ(i − 1, j), γ(i, j), γ(i + 1, j)). 

Instead of a function with a 72-bit input, we 

need two copies of a function with a 24-bit 

input. 

Local minimum and local maximum operators 

on large windows are used for finding 

lower/upper image envelopes: lmin(lmax) , 

lmax(lmin), 

which are very useful in background 

subtraction methods. Both the operators are 

separable. Every neighborhood column can be 

minimized in the pipeline: 

μ(i, j) = MIN2r+1 - f(i, j−r), . . . , 

f(i, j), . . . ,   f(i, j+r), 

and the final result g(i, j) is the minimum of 

2r+1 partial results (Fig. 3): 

g(i, j) = MIN2r+1_ μ(i, j−r), . . . , 

μ(i, j), . . . , μ(i, j+r). 

Thus the decomposition results in reducing the 

problem size from (2r + 1)2 to 2(2r + 1). 
 

4. Weighted Order Statistics filter 

 

The Weighted Order Statistics (WOS) filter 

applies weights to each of the inputs in the 

window. The center block is assigned a weight 

of 3, while the four corners are assigned a 

weight of 1, and the remaining blocks a weight 

of 2. The WOS algorithm is given by the 

following equation: 
 

 W1*(n1-1,n2-1) 

 W2*(n1,n2-1) 

 W3*(n1 +1,n2-1) 

           Y(n1,n2)=MED W4*(n1-1,n2) 

 W5*(n1,n2) 

 W6*(n1+1,n2) 

 W7*(n1-1,n2+1) 

 W8*(n1+1,n2-1) 

 

 

where 'w x' means x repeated w times. For 

example,4 
 
3 means 3 repeated 4 times. There 

are three parts in the WOS filter that the 

information goes through: weight adding, 

sorting, and weighted ordering. The values, 

from the universal filter registers, first get a 

weight value assigned to it in relation to its 

window position. This is comprised of a set of 

nine adders that places a 2-bit weight value in 

front of the 8-bit window value, creating a 

10-bit number. These nine 10-bit values then 

move to the registers in the sorting section of 

the WOS filter. The newly weighted values are 

now placed into a second set of registers. These 

registers are used to store the data as it is being 

sorted. The sorting section uses eight 

comparators to sort the values, using only the 

last eight bits. These comparators compare two 

numbers at a time, resulting in a high value and 

a low value. Since there are nine values that 

need to be compared, the eight comparators are 

broken into two sets of 4 comparators. 

The first set compare register 1 through register 

8, and the second set compare register 2 

through register 9. This allows 

an odd number of values to be sorted. 

Multiplexers determine which value is allowed 

back into the register, depending on which set 

of comparators is being used. 
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Basically, what this hardware does is compare 

the values stored in two adjacent registers, finds 

the high value and the low value, and swaps the 

values when necessary. This process continues 

until the values are sorted from highest to 

lowest. The weighted order section is the last 

section of the WOS filter. The first two bits of 

the values are checked for their weight values. 

Recall that the weight of a number represents 

how many times a number appears in a 

sequence of numbers. A weight of two means 

the number will appear twice. For the WOS 

filter, the weight represents how many times a 

value will be entered into the shift register. The 

shift register is made of fifteen 8-bit registers 

that are wired together so that values can only 

enter through register 1. When another value 

goes to register 1, the value in register 1 gets 

shifted down to 

register 2. This continues until all fifteen 

registers have values. Once all the values have 

been placed in the shift register, the WOS filter 

is finished, and the final weighted rank can be 

output, so it can be a selection for the universal 

filter. A clock is used for the WOS filter so that 

the sorting section and the weighted ordering 

section changes properly. To completely obtain 

an output from the WOS filter takes 20 clock 

cycles, which makes this the critical path for 

the universal filter. The next slowest filter (the 

rational filter) takes less than half the number of 

clock cycles. This worst case scenario takes 

22.039ns to complete. 

 

 

Figure : 1   Block diagram of the Weighted     

Order Statistics (WOS) filter 

 

 

 

 

5. Convolution filters 

 
Linear local operators are in general performed 

by convolution with a given kernel of radius r. 

Consider the one dimensional example: 

g(i)=∑ ak f(i+k) k from –r to r 

Where ak are kernel elements (weights). 

implementation of the convolution kernels for 

many linear operators requires taking the above 

constraints into account. For example, a simple 

3 × 3 averaging kernel: 

        1 1 1 

1/9   1 1 1 

         1 1 1 

Can be approximated by 

          57 57 57 

1/2
9 

   57 57 57 

          57 57 57 

The normalization of the operator (division by 

9) was replaced by shifting the result to the 

right by 9 bits (division by 512). Appropriate 

weights (−128 ≤ 57 ≤ 127) were applied. 

Another example can be a rotation-invariant 3 

× 3 Laplacian: 

        1    4   1                     5     22     5 

1/6   4  -20  4      ≈ 1/2
5
   22  -108   22               

         1   4   1                     5      22    5 
 

The post-processor contains a programmable 

LUT, which offers a possibility to implement 

linear and nonlinear point-based operations 

(e.g., negation, gamma correction). 

 

6. HARDWARE IMPLEMENTATION 

(FPGA) 

 

6.1. Introduction: 
This report takes a set of macro cells suitable for 

designing self-timed systems and a library already 

created for the Actel field programmable gate 

arrays, and presents a library for the Xilinx FPGA. 

The reasons for using a two-phase transition 

signaling protocol for control and a bundled 

protocol for data paths, and an introduction to the 

self-timed elements have already been detailed in 

papers .The methods of implementation of the self-

timed elements on the XC4003 FPGA, and the 

limitations of its basic structure that were 

encountered when designing the cell set will be our 
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main concern. Some results including the area 

covered by and the delay through each self-timed 

element will be provided. 

6.2. Xilinx XC4000 FPGA 

Xilinx FPGA performs the function of a custom LSI 

circuit using look-up tables, and has a row of logic 

cells (Configurable Logic Blocks, CLBs) 

interspersed with routing channels. It is user-

programmable and re-programmable in a system. 

The CLB has thirteen inputs and four outputs which 

provide access to the function generators and flip-

flops .Nine of the thirteen inputs are used by the 

function generators, while the other four are used 

only by the flip flops. Two of the outputs are 

clocked, while the other two are not. The structure 

of the CLB, shown in Figure 1, is complex 

compared to the Actel basic module. The CLB 

structure controls the properties of our cell set, both 

area and time, as it is the basis for all the macros in 

the library. The XC4003, of the 4000 series, has 

3000 gates, a 10x10 array of these CLBs, 80 I/O 

Blocks (IOBs) and a hierarchy of interconnect lines 

to route all of them together. 

 

6.3. Implementation 

When designing the elements, it had to be 

guaranteed that on programming them onto the 

FPGA they were partitioned, placed and routed 

appropriately, so that their operation is not altered in 

any way. Therefore, the self-timed elements that 

occupied more than one CLB had to be made into 

Hard Macros and the ones that occupied only one 

CLB had to be constrained to specific function 

generators. Hard macros improve rout ability and 

performance. They can only be made up of CLBs, 

no routing will be included and they should be 

rectangular for the PPR program, i.e. the CLBs that 

the self-timed element occupies should be arranged 

so that they fit into a rectangle area to minimize 

wastage of resources. A hard macro is created by 

running the HMGEN program on the *.lca file. This 

file can be created by the XACT Design Editor 

(XDE) or by running the XMAKE program on a 

schematic from Work view (schematic capture 

program used in designing the cell set).  The major 

drawback of using Xilinx for this cell set or using it 

in self timed design was the lack of control over the 

routing, which can make the bundling constraint 

harder to guarantee. 

Consequently, the correct operation of the self-

timed elements cannot be assured. The Xilinx CLB 

structure is large and complex compared to, for 

example, the Actel basic module, and was thus 

harder to use to full capacity when implementing 

the self-timed elements. For example, the flip-flops 

and their clocked outputs were never used in 

designing any of the elements. Most of the self-

timed elements contain some kind of feedback for 

memory. This was difficult to implement using the 

Xilinx CLB as it did not allow local feedback and 

all feedback had to be outside the CLB. 

The necessity for more outputs per CLB arose, as 

the flip-flop outputs could not be used without an 

additional clock input to the element. A third 

function generator, H, inside a CLB could have  

been  more useful, if it had more inputs independent 

of the other function generators and had two 

unclocked outputs. Another limitation was the 

maximum number of inputs to a CLB, although 

increasing this would make the CLB bigger 

The CCL circuit has been implemented for 

Xilinx XC4000 series FPGAs. The Threshold 

block is bit parallel, and uses dedicated fast 

carry logic; it is highly scalable.  A 16 bit 

threshold block occupies 9 CLBs. The Initial 

Labelling block occupies 3 CLBs per bit. The 

non-zero maximum unit occupies 14 CLBs 

whereas the other maximum units occupy 4 

CLBs. The line buffer is implemented using 

XC4000 Select-RAM
TM

.  An N pixel line buffer 

occupies N/2 +2 CLBs. The whole CCL circuit 

has been implemented in an XC4010E-1 FPGA 

chip (20 by 20 CLBs).  For a 256 by 256 image, 

it fits easily on to the XC4010E. 

 

7. Results Obtained 

 



International Journal of Science & Technology  ISSN (online): 2250-141X 

www.ijst.co.in  Vol. 1 Issue 1, November 2011 

 

© Copyright – IJST 2011 

28 

We currently support the color to grayscale 

conversion algorithm, convolution algorithm 

and histogram. The color to grayscale 

conversion and the histogram runs without any 

constraints on the size of image. Convolution 

algorithm can have limited width. 

7.1 Colors to Grayscale 

Each pixel of the image contains three bytes 

representing each color. To obtain a grayscale 

image, we have to average the color value for 

each pixel. The program buffers 64 consecutive 

pixels, calculates the average and sends the new 

color values of each pixel to the computer 

through the USB cable. The program does not 

impose any size limits on the image, but larger 

images take more time to produce results. 

Shown below is an example input image and 

the result of gray scale conversion. 

 
 

7.2 Histogram 

The histogram program takes a color image as 

input. It calculates the number of pixels 

with a particular color value of the three colors 

in R-G-B order. For each color, an array of 256 

locations is created and the number of pixels, in 

the entire image, of a particular color level is 

recorded in the respective array. This 

information is pushed to the USB cable starting 

from number of pixels with color value equal to 

zero in the R-G-B order. 

 
7.3 Sobel Edge Detection 

We have applied two Sobel filters one after the 

other to perform edge detection in both 

directions. For this, we modified our 

convolution algorithm to do the same 

computation twice. However, since we did not 

have a square root function, we had to 

approximate the merging of two filters using 

simple addition operator. We have some errors 

in the results we obtained. 

 
7.4 Convolution 

The convolution program reads the                 

convolution mask from the Flash and reads the 

amount of shift required to approximate the 

division operation. Originally, we had put 

independent statements inside par blocks, but 

we saw drastic improvements in the compile 

time when the par was removed. The mask is 

applied over the image starting 

from the first row. Remember that since BMP 

images are stored starting from the bottom, the 

first row is the bottommost row. 

The program buffers three consecutive rows 

and then applied the convolution mask on new 

columns from left to right. The result of the 

convolution is stored in the center row left 

pixel. Due to this, the output image is  shifted 

to the left by one pixel. The mask 

does not convolute with the last one or two 

columns depending upon whether the width 

of the image is a multiple of three (the mask  

size). After the result of one row is available, it 

is returned to the computer through the USB. 

An inherent inefficiency in the program is 

present because we are buffering three rows at a 

time and then next time, we again buffer two of 

these rows. This improvement is left for future 

work. 

The results for two different masks are shown 

below. The first one is the original 

image, the second one is Gaussian  smoothened 

and the third is smoothened by an all ones 

mask. The third figure is lighter because we 
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have approximated the division-by-nine with a 

shift-by-three. 

 

8. Conclusions 

 

The pipelined architecture implemented in 

hardware, especially in programmable logic 

devices, provides a constant latency of the 

image processing path, which fulfills the main 

condition of real-time systems. Implementing 

the procedures is well supported by widespread 

design tools (VHDL compilers, libraries, etc.). 

Low power consumption and small size of the 

devices encourage constructors to put the 

preprocessor into the image sensing unit. The 

cost of the image processing hardware is 

relatively low, and will decrease with FPGA 

chips enhancement. In the case of remote vision 

systems, this can lead to reducing the 

bandwidth between the vision-based sensor and 

the host (e.g., a robot controller). Moreover, the 

possibility to implement selected 

microprocessor and FPGA provides means of 

implementing the required low level post-

processing and additional, high level 

procedures (image analysis, pattern recognition, 

etc.). 
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