
International Journal of Science & Technology  ISSN (online): 2250-141X 

www.ijst.co.in  Vol. 1 Issue 2, December 2011 

 

© Copyright – IJST 2011 

 
49 

Time and Carrier Frequency offset in OFDM Systems using Joint 

Maximum Likelihood Estimation without additional pilots 

 
Rangaiah L, Srinivasa Rao K 

TRR College of Engineering, Hyderabad, rleburu@gmail.com 

 

Abstract 
In this paper, we present and evaluate the joint maximum likelihood (ML) estimation of the 

time and carrier-frequency offset in orthogonal frequency division multiplexing (OFDM) systems. The 

main element is the OFDM, it contains the  sufficient information to perform synchronization. 

Redundant information contained within the cyclic prefix enables this estimation without additional 

pilots. Simulations show that the frequency estimator may be used in a tracking mode and the time 

estimator in an acquisition mode. Our novel algorithm exploits the cyclic prefix preceding the OFDM 

symbols, thus reducing the need for pilots. 

 

1 Introduction 

Orthogonal frequency-division 

multiplexing (OFDM) systems have recently 

gained increased interest. OFDM is used in the 

European digital broadcast radio system and is 

being investigated for other wireless 

applications such as digital broadcast 

television and mobile communication systems, 

as well as for broadband digital 

communication on existing copper networks. 

We address two problems in the design of 

OFDM receivers. One problem is the unknown 

OFDM symbol arrival time. Sensit-ivity to a 

time offset is higher in multicarrier systems 

than in single-carrier systems and has been 

discussed in [3] and [4]. A second problem is 

the mismatch of the oscillators in the 

transmitter and receiver. The demodulation of 

a signal with an offset in the carrier frequency 

can cause a high bit error rate and may degrade 

the performance of a symbol synchronizer. A 

symbol clock and a frequency offset estimate 

may be generated at the receiver with the aid 

of pilot symbols known to the receiver [6,7], 

by maximizing the average log-likelihood 

function.  Redundancy in the transmitted 

OFDM signal also offers the opportunity for 

synchronization. We present and evaluate the 

joint maximum likelihood (ML) estimation of 

the time and carrier-frequency offset in OFDM 

systems. The key element that will rule the 

discussion is that the OFDM data symbols 

already contain sufficient information to 

perform synchronization. Our novel algorithm 

exploits the cyclic prefix preceding the OFDM 

symbols, thus reducing the need for pilots. 

 

2 The OFDM system model 
The baseband, discrete-time OFDM 

system model as shown in fig.1. The complex 

data symbols are modulated by means of an 

inverse discrete Fourier transform (IDFT) on N 

parallel subcarriers. The resulting OFDM 

symbol is serially transmitted over a discrete-

time channel, whose impulse response we 

assume is shorter than L samples. At the 

receiver, the data are retrieved by means of a 

discrete Fourier transform (DFT).  An accepted 

means of avoiding inter-symbol interference 

(ISI) and preserving orthogonality between 

subcarriers is to copy the last L samples of the 

body of the OFDM symbol (N samples long) 

and append them as a preamble | the cyclic 

prefix | to form the complete OFDM symbol 

[1,2]. The effective length of the OFDM 

symbol as transmitted is this cyclic prefix plus 

the body (L + N samples long). The insertion 

of a cyclic prefix can be shown to result in an 
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equivalent parallel orthogonal channel 

structure that allows for simple channel 

estimation and equalization. In the following 

analysis we assume that the channel is non-

dispersive and that the transmitted signal s(k) 

is only affected by complex additive white 

Gaussian noise (AWGN) n(k). We will, 

however, evaluate our estimator's performance 

for both the AWGN channel and a time-

dispersive channel. 

 

 

 

 

 

 

 

 

 

 
Fig. 1: The OFDM system, transmitting subsequent blocks of N complex data 
 

Consider two uncertainties in the 

receiver of this OFDM symbol: the uncertainty 

in the arrival time of the OFDM symbol and 

the uncertainty in carrier frequency. The first 

un-certainty is modeled as a delay in the 

channel impulse response δ(k - θ), where θ is 

the integer valued unknown arrival time of a 

symbol. The latter is modeled as a complex 

multiplicative distortion of the received data in 

the time domain e
j2πεk/N

 , where ε denotes the 

difference in the transmitter and receiver 

oscillators as a fraction of the inter-carrier 

spacing (1=N in normalized frequency). 

Notice that all subcarriers experience the same 

shift ε. These two uncertainties and the AWGN 

thus yield the received signal 

 

r(k) = s(k - θ )e
j2πεk/N

 + n(k)   

 ----(1) 

Two other synchronization parameters 

are not accounted for in this model. First, an 

offset in the carrier phase may affect the 

symbol error rate in coherent modulation. If 

the data is differentially encoded, however, this 

effect is eliminated. An offset in the sampling 

frequency will also affect the system 

performance. We assume that such an offset is 

negligible. Now consider the transmitted 

signal s(k). This is the DFT of the data 

symbols xk, which we assume are independent. 

Hence, s(k) is a linear combination of 

independent, identically distributed random 

variables. If the number of subcarriers is 

sufficiently large, we know from the central 

limit theorem that s(k) approximates a 

complex Gaussian process whose real and 

imaginary parts are independent. This process, 

however, is not white, since the appearance of 

a cyclic prefix yields a correlation between 

some pairs of samples that are spaced N 

samples apart. Hence, r(k) is not a white 

process, either, but because of its probabilistic 

structure, it contains information about the 

time offset ε and carrier frequency offset ε. 

This is the crucial observ-ation that offers the 

opportunity for joint estimation of these 

parameters based on r(k). 

 

3 ML estimation 

Assume that 2N+L consecutive samples 

of r(k) (shown in Fig 2), and that these 

samples contain one complete (N + L) sample 

OFDM symbol. The position of this symbol 

within the observed block of samples, 

however, is unknown because the channel 

delay µ is unknown to the receiver. Define the 

index sets 
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I     = {θ, …….,θ+L-1}  and 

I
1      = 

{θ+N, …….,θ+N+L-1}   -------------------

------(2) 

The set I
1

 thus contains the indices of the data 

samples that are copied into the cyclic prefix, 

and the set I contains the indices of this prefix. 

Collect the observed samples in the (2N +L)X1 

-vector r = [r(1)…..  r(2N +L)]T . Notice that 

the samples in the cyclic prefix and their 

copies, r(k), K ε I U I
1
 are pairwise correlated, 

i.e., 

Vk ε I : E{r(k)r*(k + m)} = {ζs
2
+ ζn

2      
m=0,   

ζse
-j2πε   

     m=N,   

Otherwise   --------------------(3) 

while the remaining samples r(k); K ε I U I
1
  

are mutually uncorrelated. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Structure of OFDM signal with cyclicly extended symbols, s(k). The set I contains the cyclic 
prefix, i.e. the copies of the L data samples in I . 

 

The log-likelihood function for θ and ε, 

ᴧ(θ, ε) is the logarithm of the probability den-

sity function f (r/θ, ε) of the 2N + L observed 

samples in r given the arrival time θ and the 

carrier frequency offset ε. In the following, we 

will drop all additive and positive multiplica-

tive constants that show up in the expression 

of the log-likelihood function, since they do 

not affect the maximizing argument. Moreo-

ver, we drop the conditioning on (θ, ε) for no-

tational clarity. Using the correlation proper-

ties of the observations r, the log-likelihood 

function can be written as 

 

 ᴧ(θ, ε) = log f(r/θ, ε) ---------------------

-- (4) 

The ML estimation of   θ and ε is the argument 

maximizing ᴧ(θ, ε), we may omit this factor. 

Under the assumption that r is a jointly Gauss-

ian vector, (4) is shown in the Appendix to be  

  

ᴧ(θ, ε) = |γ(θ)| cos(2ᴨε+L γ(θ)) - ρφ(θ) ---------

---------------(5) 

where L represent the argument of a complex 

number. 

 

The first term in (5) is the weighted magnitude 

of γ(θ) , a sum of L consecutive correlations 

between pairs of samples spaced N samples 

apart. The weighting factor depends on the 

frequency offset. The term φ(θ) is an energy 

term, independent of the frequency offset ε . 

Notice that its contribution depends on the 

SNR. 

The maximization of the log-

likeluihood function can be performed in two 

steps: 

Max ᴧ(θ, ε) = max max ᴧ(θ, ε) = max ᴧ(θ, εML( 

θ)) ------------6 

The maximum with respect to the frequency 

offset ε is obtained when the cosine term in (5) 

equals one. This yields the ML estimation of ε,  

εML( θ) = -1/2ᴨ L γ(θ) + n ---------------------7 

where n is an integer. A similar frequency off-

set estimator has been derived in [11] under 

different assumptions. Notice that by the peri-
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odicity of the cosine function, several maxima 

are found. We assume that an acquisition, or 

rough estimate, of the frequency offset has 

been performed and that |ε | < 1/2; thus n = 0. 

Since  cos(2ᴨ εML( θ)+ L γ(θ)) = 1, the log-

likelihood function of  θ (which is the com-

pressed log-likelihood function with respect to 

ε ) becomes 

ᴧ(θ, εML( θ)) = | γ(θ)) - ρφ(θ)|                                  

------------------8 

and the joint ML estimation of θ and ε be-

comes 

θML  =   arg max{| γ(θ) | - ρφ(θ)}                                

----------------9 

εML  =  -1/2ᴨ L γ(θML)                                         

---------------------10 

 

Notice that only two quantities affect 

the log-likelihood function : the number of 

samples in the cyclic prefix L and the correla-

tion coefficient  given by the SNR. The former 

is known at the receiver, and the latter can be 

fixed. Basically, the quantity γ(θ) provides the 

estimates of θ and ε . Its magnitude, compen-

sated by an energy term, peaks at time instant 

θML, while its phase at this time instant is pro-

portional to εML. If ε is a priori known to be 

zero, the log-likelihood function for θ  be-

comes ᴧ(θ) = Re{ γ(θ)}- ρφ(θ) and θML  is its 

maximizing argument. This estimator and a 

low-complexity variant are analyzed in [9]. 

In an OFDM receiver, the quantity 

γ(θ), which is defined in (6), is calculated on-

line, cf. Fig 3. The signals ᴧ(θ, εML(θ))  and -

(1/2)L γ(θ)} (whose values at the time instants 

θML yield the frequency estimates) are shown 

in Figure 4. Notice that (12) and (13) describe 

an open-loop structure. Closed-loop imple-

mentations based on (5) and (11) may also be 

considered. In such structures the signal ᴧ(θ, 

εML(θ))   is typically fed back in a phase-

locked loop (PLL). If we can assume that θ  is 

constant over a certain period, the integration 

in the PLL can significantly improve the per-

formance of the estimators. 
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Figure 3: Structure of the estimator 
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4. Results 

Performance results for the AWGN 

channel are shown in Figures 5 and 6. First, 

the estimator mean-squared error as a function 

of L is estimated. Figure 5 shows the estimator 

performance for SNR values of 4 dB, 10 dB 

and 16 dB. Notice that the performance of the 

time estimator is asymptotically independent 

of L, provided that the cyclic prefix is longer 

than a certain threshold value. This threshold 

value decreases with the SNR. Both the time 

estimator and the frequency estimator exhibit 

such a performance threshold based on L. 

However, notice that as L increases beyond 

these respective thresholds, only the frequency 

estimator will show continued improvement. 

Thus, for the AWGN channel and from a time 

synchronization viewpoint, there is very little 

advantage in increasing the length of the cyclic 

prefix beyond the time estimator's threshold. 

Second, the estimator variances as a function 

of SNR for L = 4, L = 8, and L = 15 are shown 

in Figure 6. Notice that even in these plots a 

threshold phenomenon as in Figure 5 occurs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 5: Performance of the time (top) and frequency (bottom) estimators for the AWGN channel (4 dB, 10 dB, and 

16 dB). 

 

The above results do not directly apply 

to a time dispersive channel environment. 

Therefore, we also consider the performance 

of our estimators in a wireless system 

operating at 2 GHz with a bandwidth of 5 

MHz. An outdoor dispersive, fading 

environment with micro-cell characteristics is 

chosen: the channel has an exponentially 

decaying power delay profile with root mean 

squared width equal to 0:4 µs   and a 
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maximum delay spread of 3 µs (corresponding 

to 15 samples). It is modeled to consist of 15 

independent Rayleigh-fading taps [16] and 

additive noise. We choose a cyclic prefix 

consisting of 15 samples. This choice avoids 

ISI, while the loss of power and bandwidth due 

to the cyclic prefix (L=(N+L)) is about 5%. 

This system transmits about 18,000 OFDM 

symbols per second, each containing 256 

complex information symbols. In this 

dispersive environment the definition of θ is 

ambigious. We define the true delay as the 

center-of-gravity of the channel impulse 

response. Moreover, we define the SNR as  

SNR = ζs
2
 Ph / ζn

2
, where Ph is the sum of the 

average power in all channel taps. 

The error floor in Figure 6 clearly 

shows the performance degradation caused by 

the dispersive channel as compared with the 

corresponding curves for the AWGN channel. 

In the dispersive case, the estimators operate in 

an environment for which they are not de-

signed (they are not optimal). Signals passed 

through the AWGN channel will have the sim-

ple, pairwise correlation structure (3), but sig-

nals passed through a dispersive channel gen-

erally have a more complex correlation struc-

ture. Depending on the application and the 

presence of a high performance channel esti-

mator/equalizer, the performance of the time 

estimate in Figure 6 (standard deviation of 1-2 

samples) may be good enough to generate a 

stable clock. In most situations this perfor-

mance will suffice at least in an acquisition 

mode. The frequency offset estimator shows 

an error standard deviation of less than 2% of 

the inter-tone spacing (see Figure 6). 

 

 

 
 

 
Fig 6: Performance of the time (top) and frequency (bottom) estimators for the AWGN channel (L = 4, L = 8, and L 
= 15) and the dispersive channel (L = 15).  
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Fig 7: Performance of the frequency estimator for the AWGN channel and the dispersive channel (L = 15). The 

number of subcarriers is N = 256. 
Finally, the performance of the fre-

quency estimator is plotted in Fig.7.  The SNR 

loss is a function of  ε. We assume that a fre-

quency offset can be corrected using the esti-

mate  εML and we thus use the standard devia-

tion of the estimate as the argument in (2). The 

SNR loss is plotted for the AWGN channel 

and the dispersive channel. Notice that even 

for the dispersive channel this loss does not 

exceed 0.5 dB for SNR values between 0 dB 

and 20 dB. 
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