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ABSTRACT 

The ternary quadratic homogeneous equation representing cone given by   x2 + 9y2 = 

26z2 is analyzed for its  non-zero  distinct  integer  points  on it.   Five  different  patterns  of  

integer  points  satisfying  the  cone  under  consideration  are  obtained.  A few  interesting  

relation  between  the  solutions and  special  number  patterns  are  presented. 
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Notations used:  

nmt , -polygonal number of rank n with size m  

𝑃𝑛
𝑚-Pyramidal number of rank n with size m  

 ga – Gnomonic  number  of  rank  a.  

 Pn -  Pronic number of rank n.  

 SOn
 - Stella octangular number of rank n.   

 On-Octahedral number  of  rank  n. 

  

1. INRODUCTION: 

The ternary quadratic Diophantine equations 

offer an unlimited field for research. This 

communication  concerns  with  get  another  

interesting  ternary  quadratic  equation  

representing x2 + 9y2 = 26z2  a  cone  for  

determining  its  infinitely many non – zero  

integral points.  Also  a  few  interesting 

relations  among  the  solutions  and special  

numbers  are  presented.   

 

 

2. METHOD OF ANALYSIS:  

The ternary quadratic equation to be solved 

for  its non – zero integer  solution  is              

         x2 + 9y2 = 26z2                                (1) 

Assume z(a, b) = a2+9b2,where a, b > 0    (2) 

We illustrate below five different patterns  of  

non–zero distinct integer solutions  to (1)  
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2.1 Pattern: 1 

Write 26 as  

           26 = (5 + i) (5 – i)         (3) 

Substituting (2) & (3) in (1), employing the 

method of factorization, define  

(x+3 iy)(x–3 iy) = (5+ i)(5– i)(a+3 ib)2(a– 3ib)2 

Equating real and imaginary parts, we get  

  x = x (a, b) = 5a2 – 45b2 – 6ab                (4) 

 y = y (a, b) = 
1

3
 (a2 – 9b2 + 30ab)        (5) 

Thus (2),(4) and (5) represents  non- zero  

distinct  integral  solutions  of  (1)  in  two  

parameters  for  suitable  a, b. As our interest 

is  on  finding  integer  solutions,  we  choose  

a and  b  suitably  so  that  the  values  of  x, y 

and  z  are  integers.  In  what  follows  the  

values  of a, b  ad  the  corresponding  integer  

solutions  are  exhibited.  

Case:1  Let a = 3A, b = 3B 

The corresponding solutions of (1) are 

x = x (a, b) = 45A2 – 405B2 – 54 AB  

y = y (a, b) = 3A2 – 27B2 + 90AB 

z = z (a, b) = 9A2 + 81B2 

 

Properties: 

1.  x (A, 1) – 45 t4,A + g27A  ≡  0 (mod 2) 

2.  y (A, A+1) + 2t29, A +  g38A ≡  0 (mod2)  

3.  x (A, A) – 3z (A, A) – 3PA + 156 t4,A = 0  

4.  z (B, B) – 2 t92, B – g44 B = 1  

5.  z (A(A+1), A(A+1)) – 360  𝑡3,
2

A  = 0 

 

Case: 2     Let a = 3A, b = 3A + 1 

The corresponding solutions of (1) are 

 x = x (A, A) = 414A2 + 288A + 45 

 y = y (A, A) = 66A2 + 12A – 3 

 z = z (A, A) = 90A2 + 54A + 9 

Properties:  

1. x(A(A+1),1)–414P2
A - 288PA≡0(mod 5) 

2. z (A,A) – 90t4, A – g27A ≡  0  (mod 2) 

3. y(A2(A+1),1)–132(𝑃𝐴
5)2–24 𝑃𝐴

5 ≡0(mod3) 

4. z(A(2A+1),1 )–270𝑂𝐴
2 - 162OA

 ≡ 0(mod3)  

5. x(A(2A2-1),1)–414𝑆𝑂𝐴
2-288SOA+45 ≡ 0(mod5) 

 Case: 3    Let a = 3A, b = B 

The corresponding solutions of (1) are  

x = x (a, b) = 45A2 – 45B2 – 18A 

y = y (a, b) = 3A2 – 3B2 + 30AB 

z = z (a, b) = 9A2 + 9B2 

Properties:  

1.   x (A, A + 1) – 15y (A, A+1)+48 PA= 0  

2.   3y(A+1, A) z (A+1,A)+18t4, A – 30PA= 0  

3.  x(A(A+1),1)–45 𝑃𝐴
2+18PA≡ 0 (mod 2) 

4.  12{ y(A, A) – 30 t4,A} a  nasty  number  

5. 24{z(A,B)– 9 t4, A – 9 t4,B } a nasty number  

 

2.2 Pattern: 2  

Instead of (3), write 26 as  

         26 = (1 + 5i) (1 – 5i)         (6) 

Following the procedure presented as in 

pattern:1, the corresponding values of and y 

are  

x = x (a, b) = a2 – 9b2- 30ab                    (7) 

y = y (a, b) = 
1

3
(5a2- 45b2 + 6ab)               (8) 

Thus (2), (7) and (8) represents non- zero 

distinct integral solutions of (1) in two 

parameters. 

 

Case: 1    Let a = 3A, b = 3B 

The corresponding solutions of (1) are 

x = x (a, b) = 9A2 – 81B2 - 270AB 

y = y (a, b) = 15A2 – 135B2 + 18AB 

z = z (a, b) = 9A2 + 81B2 

Properties:  

1.x(A2(A+1),1)–18(𝑃𝐴
5)2+540𝑃𝐴

5 ≡0(mod 3)  

2. x(A, B)+15y(A, B) –234 t4, A+ 2108  t4, B = 0  

3. z(A(A+1),  B (B + 1)) – 9 𝑃𝐴
2 - 81  𝑃𝐵

2 = 0 
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4. 12{z (A, A) – 90 t4, A} a nasty number  

5. x (n(2n2–1), 1)+261SOn ≡ 0  (mod3)  

2.3 Pattern: 3 

(1) is written  in the  form  of  ratio as 

 
𝑥+𝑧

5𝑧+3𝑦
    =   

5𝑧−3𝑦

𝑥−𝑧
=

𝐴

𝐵
,   𝐵  ≠  0, 

which is equivalent to the system of equations 

B(x + z) – A (5z + 3y) = 0                   (9) 

B(5z-3y) -  A(x – z) = 0                  (10) 

Applying the method of cross- multiplication  

the  integer  solutions  of  (1)  are  given  by 

x = x (A, B) = 3A2 – 3B2 + 30AB           (11)  

y = y (A, B) = 5A2 – 5B2 – 2AB             (12) 

z = z (A, B) = 3A2 + 3B2,                        (13) 

which represents non – zero distinct integral 

of (1) in two parameters 

Properties:  

1.  x(A(A+1),B(B+1))–5y(A(A+1),B(B+1))  

     – 72 𝑃𝐴
2 + 78 𝑃𝐵

2= 0. 

2.  y (A,1) – 5 t4, A + gA ≡ 0 (mod 2) 

3.  z (A, B) – 3 t4,A -3 t4, B = 0 

4.  x (A, 1) – 30 PA + 27 t4, A ≡ 0  (mod 3)  

5. 24{z(A, B)- 3t4,A- 3t4,B }  a nasty  number.  

 

2.4 Pattern: 4 

(1) is written  as  

 26z2 – 9y2 = x2 = x2 * 1                   (14) 

Assume x (a, b) = 26a2 – 9b2                   (15)   

Write(1)as1= (√26 + 5)(√26 − 5)      (16)                

Substituting (15) and  (16)  in  (14)  and  

applying  the  method  of  factorization,  

define  

 (√26  𝑧 + 3𝑦) = (√26 𝑎 + 3𝑏) 2(√26 − 5) 

Equating rational and irrational parts, we have 

y = y (a, b) = 
1

3
 {130a2 + 45b2 – 156ab}        (17)                           

 z = z (a, b) = 26a2 + 9b2 – 30ab        (18) 

Case: 1    Let a = 3A, b = 3B 

The corresponding solutions of (1) are 

x = x (a, b) = 234A2 – 81B2 

y = y (a, b) = 390A2 + 135B2 – 468AB 

z = z (a, b) = 234A2 + 81B2 – 270AB 

Properties:  

1.   x (A(A+1), 1) – 234 𝑃𝐴
2 ≡ 0 (mod 3) 

2.  x (A, 1)–z(A, 1) + g135A ≡ 1(𝑚𝑜𝑑 2) 

3.  x (A, B) – 234 t4, A + 81 t4, B =0 

4.  z (A, 1) – 2t 236, A + g19A + 1 = 0 

5.  x (A, A) – 153 t4, A = 0.  

 

Case: 2     Let a = 3A, b = 3B+1 

The corresponding solutions of (1) are 

x = x (a, b) = 234A2 – 81B2 – 54B – 9 

y = y (a, b) = 390A2+135B2-468A+90B–1404AB + 15 

z = z (a, b) = 234A2 + 81B2 – 90A + 54B – 270AB + 9. 

Properties: 

1.   x (A(A+1), 1) – 234 𝑃𝐴
2 + 144 = 0 

2.   y (A, A) + 879 t4, A + g189 A ≡ 0 (mod 2)  

3.  z ((B, 1) – 2t236, B + g64 B + 143 = 0 

4.   x (A, A) – 153 t4, A + g27A ≡ 0 (mod 2) 

5.   y (B, 1) – 390 t4, B + g936B  ≡ 1 (mod 2) 

2.5 Pattern: 5 

Assume x (a, b) = 26a2 – 9b2                   (19) 

Substituting (19) in (1) and applying the method of 

factorization, define 

 (√26 a + 3b)2  =  (√26 z + 3y) 

Equating rational and irrational, we get 

y = 
1

3
  {26a2 + 9b2}                                  .(20)  

z = 6ab                                            (21) 

As our  interest  is  on  finding  integer  solutions,  

We  choose  a  and  b  suitably  so  that the  values  

of  x,  y  and  z  are  in  integers.  In  what  follows  

the  values  of  a, b  and  the  corresponding  

integer  solutions  are  exhibited.  

 

Case:1   Let  a =  3A,  b = 3B 

The corresponding solutions of (1) are 

x = x (a, b) = 234A2 – 81B2 

y = y (a, b) = 78A2 + 27B2 

z = z (a, b) = 54AB 

Properties: 

1.   x (A(A+1), 1) – 234 𝑃𝐴
2 ≡  0 (mod 3) 

2.   x (A, B) – 234 t4, A + 81 t4, B = 0 

3.   z (A, A+1) – 54 PA = 0  
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4.   y (A, 1) – 78PA + g39A ≡ 0 (mod 2) 

5.   y (A, B) – 2t 80, A – g38A – 27 t4, B = 1 

 

Case:2    Let  a = 3A,  b = B 

The corresponding solutions of (1) are  

x = x (a, b) = 234A2 – 9B2 

y = y (a, b) = 78A2 + 3B2 

z = z (a, b) = 18 AB 

Properties: 

1.  z (A(A+1), 1) – 18 PA = 0 

2.   y (A(A+1), B(B+1)) – 78 𝑃𝐴
2  - 3𝑃𝐵

2=  0. 

3.  x (A,A) – 225 t4, A = 0 

4.  z (A,A) – 18 t4, A = 0 

5.  y (A, B) – 78t4, A – 3t 4, B = 0 

Case: 3 Let a = 3A, b = 3B + 1 

The corresponding solutions of (1) are 

x = x (a, b) = 234A2 – 81B2 – 54B-9 

y = y (a, b) = 78A2 + 27B2 + 18B +3  

z = z (a, b) = 18A + 54AB 

 

Properties: 

1.   x (A, A) – 153 t4, A + 2 g27A ≡  0  (𝑚𝑜𝑑  10)   

2.   y (B(B+1),1 ) – 78 𝑃𝐵
2 ≡ 0 (mod  48) 

3.   z (A (A + 1)) – g9A – 54 PA = 1 

4.   y (A, B) – 78 t4, A – 27 t4, B – g9B ≡ 0 (mod 4) 

5.   z (A, A) – 2t 56, A – g35A = 1 

 

3. CONCLUSION: 

    In this work, the  ternary  quadratic  

Diophantine  equations  refereeing  a  conies  

is analysed for  its  non -  zero  distinct  

integral  points.  A  few interesting  properties  

between  the  solutions  and  special  numbers  

are  presented.  To  conclude,  one  may  

search  for  other  patterns  of  solutions  and  

their  corresponding  properties  for  the  cone  

under  consideration  
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