LATTICE POINTS ON THE CONE $x^2 + 9y^2 = 26z^2$

Dr. P.JAYAKUMAR

(Associate professor) Department of Mathematics A.V.V.M.,Sri Pushpam College, Poondi (Autono), Thanjavur (Dt.) - 613 503, T.N., India pjkumar58@gmail.com

S.PRABH

(Assistant professor) Department of Mathematics A.V.V.M. Sri Pushpam College, Poondi (Autono), Thanjavur (Dt.) -613 503, T.N., India Prabhaass124@gmail.com

ABSTRACT

The ternary quadratic homogeneous equation representing cone given by $x^2 + 9y^2 = 26z^2$ is analyzed for its non-zero distinct integer points on it. Five different patterns of integer points satisfying the cone under consideration are obtained. A few interesting relation between the solutions and special number patterns are presented.

Key words: Ternary Quadratic, homogenous cone, integer solutions, special numbers. 2010 Mathematics Subject Classification: 11D09

Notations used:

 $t_{m,n}$ -polygonal number of rank n with size m

 P_n^m -Pyramidal number of rank n with size m

 g_a – Gnomonic number of rank a.

 P_n - Pronic number of rank n.

 SO_n - Stella octangular number of rank n.

 O_n -Octahedral number of rank n.

1. INRODUCTION:

The ternary quadratic Diophantine equations offer an unlimited field for research. This communication concerns with get another interesting ternary quadratic equation representing $x^2 + 9y^2 = 26z^2$ a cone for determining its infinitely many non – zero integral points. Also a few interesting relations among the solutions and special numbers are presented.

2. METHOD OF ANALYSIS:

The ternary quadratic equation to be solved for its non – zero integer solution is

$$x^2 + 9y^2 = 26z^2 \tag{1}$$

Assume
$$z(a, b) = a^2 + 9b^2$$
, where $a, b > 0$ (2)

We illustrate below five different patterns of non–zero distinct integer solutions to (1)

2.1 Pattern: 1

Write 26 as

$$26 = (5 + i)(5 - i) \tag{3}$$

Substituting (2) & (3) in (1), employing the method of factorization, define

$$(x+3 iy)(x-3 iy) = (5+i)(5-i)(a+3 ib)^{2}(a-3ib)^{2}$$

Equating real and imaginary parts, we get

$$x = x (a, b) = 5a^2 - 45b^2 - 6ab$$
 (4)

$$y = y (a, b) = \frac{1}{3} (a^2 - 9b^2 + 30ab)$$
 (5)

Thus (2),(4) and (5) represents non-zero distinct integral solutions of (1) in two parameters for suitable a, b. As our interest is on finding integer solutions, we choose a and b suitably so that the values of x, y and z are integers. In what follows the values of a, b ad the corresponding integer solutions are exhibited.

Case:1 Let a = 3A, b = 3B

The corresponding solutions of (1) are

$$x = x$$
 (a, b) = $45A^2 - 405B^2 - 54$ AB

$$y = y (a, b) = 3A^2 - 27B^2 + 90AB$$

$$z = z$$
 (a, b) = $9A^2 + 81B^2$

Properties:

1.
$$x(A, 1) - 45 t_{4,A} + g_{27A} \equiv 0 \pmod{2}$$

2.
$$y(A, A+1) + 2_{t29, A} + g_{38A} \equiv 0 \pmod{2}$$

3.
$$x(A, A) - 3z(A, A) - 3P_A + 156t_{4,A} = 0$$

4. $z(B, B) - 2 t_{92}$, $B - g_{44}$ B = 1

5.
$$z(A(A+1), A(A+1)) - 360 t_{3,A}^2 = 0$$

Case: 2 Let a = 3A, b = 3A + 1

The corresponding solutions of (1) are

$$x = x (A, A) = 414A^2 + 288A + 45$$

$$y = y (A, A) = 66A^2 + 12A - 3$$

$$z = z (A, A) = 90A^2 + 54A + 9$$

Properties:

1.
$$x(A(A+1),1)-414P_A^2 - 288P_A \equiv 0 \pmod{5}$$

2.
$$z(A,A) - 90t_{4,A} - g_{27A} \equiv 0 \pmod{2}$$

3.
$$y(A^2(A+1),1)-132(P_A^5)^2-24$$
 $P_A^5 \equiv 0 \pmod{3}$

4.
$$z(A(2^A+1),1)-2700_A^2 - 162O_A \equiv 0 \pmod{3}$$

5.
$$x(A(2A^2-1),1)-414SO_A^2-288SO_A+45 \equiv 0 \pmod{5}$$

Case: 3 Let a = 3A, b = B

The corresponding solutions of (1) are

$$x = x (a, b) = 45A^2 - 45B^2 - 18A$$

$$y = y (a, b) = 3A^2 - 3B^2 + 30AB$$

$$z = z$$
 (a, b) = $9A^2 + 9B^2$

Properties:

1.
$$x(A, A + 1) - 15y(A, A+1) + 48P_A = 0$$

2.
$$3y(A+1, A) z(A+1,A)+18t_{4, A}-30P_A=0$$

3.
$$x(A(A+1),1)-45 P_A^2+18P_A \equiv 0 \pmod{2}$$

4.
$$12\{y(A, A) - 30t_{4,A}\}$$
 a nasty number

5.
$$24\{z(A,B)-9 t_{4,A}-9 t_{4,B}\}$$
 a nasty number

2.2 Pattern: 2

Instead of (3), write 26 as

$$26 = (1 + 5i) (1 - 5i) \tag{6}$$

Following the procedure presented as in pattern:1, the corresponding values of and y are

$$x = x (a, b) = a^2 - 9b^2 - 30ab$$
 (7)

$$y = y (a, b) = \frac{1}{3}(5a^2 - 45b^2 + 6ab)$$
 (8)

Thus (2), (7) and (8) represents non-zero distinct integral solutions of (1) in two parameters.

Case: 1 Let a = 3A, b = 3B

The corresponding solutions of (1) are

$$x = x (a, b) = 9A^2 - 81B^2 - 270AB$$

$$y = y (a, b) = 15A^2 - 135B^2 + 18AB$$

$$z = z$$
 (a, b) = $9A^2 + 81B^2$

Properties:

$$1.x(A^{2}(A+1),1)-18(P_{A}^{5})^{2}+540P_{A}^{5} \equiv 0 \pmod{3}$$

2.
$$x(A, B)+15y(A, B)-234t_4$$
, $A+2108t_4$, $B=0$

3.
$$z(A(A+1), B(B+1)) - 9 P_A^2 - 81 P_B^2 = 0$$

4. $12\{z(A, A) - 90 t_{4, A}\}$ a nasty number 5. $x(n(2n^2-1), 1)+261SO_n \equiv 0 \pmod{3}$

2.3 Pattern: 3

(1) is written in the form of ratio as

$$\frac{x+z}{5z+3y} = \frac{5z-3y}{x-z} = \frac{A}{B}, B \neq 0,$$

which is equivalent to the system of equations

$$B(x + z) - A(5z + 3y) = 0$$

$$B(5z-3y) - A(x-z) = 0$$
 (10)

Applying the method of cross- multiplication the integer solutions of (1) are given by

$$x = x (A, B) = 3A^2 - 3B^2 + 30AB$$
 (11)

$$y = y (A, B) = 5A^2 - 5B^2 - 2AB$$
 (12)

$$z = z (A, B) = 3A^2 + 3B^2$$
, (13)

which represents non - zero distinct integral of (1) in two parameters

Properties:

- 1. x(A(A+1),B(B+1))-5y(A(A+1),B(B+1))-72 P_A^2 + 78 P_B^2 = 0.
- 2. $y(A,1) 5 t_{4, A} + g_A \equiv 0 \pmod{2}$
- 3. $z(A, B) 3t_{4,A} 3t_{4,B} = 0$
- 4. $x(A, 1) 30 P_A + 27 t_{4, A} \equiv 0 \pmod{3}$
- 5. $24\{z(A, B)-3t_{4,A}-3t_{4,B}\}$ a nasty number.

2.4 Pattern: 4

(1) is written as

$$26z^2 - 9y^2 = x^2 = x^2 * 1 ag{14}$$

Assume x (a, b) =
$$26a^2 - 9b^2$$
 (15)

Write(1)as1=
$$(\sqrt{26} + 5)(\sqrt{26} - 5)$$
 (16)

Substituting (15) and (16) in (14) and applying the method of factorization, define

$$(\sqrt{26} \ z + 3y) = (\sqrt{26} \ a + 3b)^{2} (\sqrt{26} \ - 5)$$

Equating rational and irrational parts, we have $\frac{1}{120} (120^2 + 45)^2 = 156(11)$ (17)

$$y = y (a, b) = \frac{1}{3} \{130a^2 + 45b^2 - 156ab\}$$
 (17)

$$z = z (a, b) = 26a^2 + 9b^2 - 30ab$$
 (18)

Case: 1 Let a = 3A, b = 3B

The corresponding solutions of (1) are

$$x = x (a, b) = 234A^2 - 81B^2$$

$$y = y (a, b) = 390A^2 + 135B^2 - 468AB$$

$$z = z (a, b) = 234A^2 + 81B^2 - 270AB$$

Properties:

(9)

- 1. $x(A(A+1), 1) 234 P_A^2 \equiv 0 \pmod{3}$
- 2. $x(A, 1)-z(A, 1) + g_{135A} \equiv 1 \pmod{2}$
- 3. $x(A, B) 234 t_{4, A} + 81 t_{4, B} = 0$
- 4. $z(A, 1) 2t_{236, A} + g_{19A} + 1 = 0$
- 5. $x(A, A) 153 t_{4.A} = 0$.

Case: 2 Let a = 3A, b = 3B+1

The corresponding solutions of (1) are

$$x = x (a, b) = 234A^2 - 81B^2 - 54B - 9$$

$$y = y (a, b) = 390A^2 + 135B^2 - 468A + 90B - 1404AB + 15$$

$$z = z (a, b) = 234A^2 + 81B^2 - 90A + 54B - 270AB + 9.$$

Properties:

- 1. $x(A(A+1), 1) 234 P_A^2 + 144 = 0$
- 2. $y(A, A) + 879 t_{4, A} + g_{189 A} \equiv 0 \pmod{2}$
- 3. $z((B, 1) 2t_{236, B} + g_{64 B} + 143 = 0$
- 4. $x(A, A) 153 t_{4, A} + g_{27A} \equiv 0 \pmod{2}$
- 5. $y(B, 1) 390 t_{4, B} + g_{936B} \equiv 1 \pmod{2}$

2.5 Pattern: 5

Assume x (a, b) =
$$26a^2 - 9b^2$$
 (19)

Substituting (19) in (1) and applying the method of factorization, define

$$(\sqrt{26} a + 3b)^2 = (\sqrt{26} z + 3y)$$

Equating rational and irrational, we get

$$y = \frac{1}{3} \left\{ 26a^2 + 9b^2 \right\} \tag{20}$$

$$z = 6ab (21)$$

As our interest is on finding integer solutions, We choose a and b suitably so that the values of x, y and z are in integers. In what follows the values of a, b and the corresponding integer solutions are exhibited.

Case:1 Let a = 3A, b = 3B

The corresponding solutions of (1) are

$$x = x$$
 (a, b) = $234A^2 - 81B^2$

$$y = y (a, b) = 78A^2 + 27B^2$$

$$z = z (a, b) = 54AB$$

Properties:

- 1. $x(A(A+1), 1) 234 P_A^2 \equiv 0 \pmod{3}$
- 2. $x(A, B) 234 t_{4, A} + 81 t_{4, B} = 0$
- 3. $z(A, A+1) 54 P_A = 0$

International Journal of Science & Technology www.ijst.co.in

ISSN (online): 2250-141X Vol. 4 Issue 4, December 2014

4. $y(A, 1) - 78P_A + g_{39A} \equiv 0 \pmod{2}$

5.
$$y(A, B) - 2t_{80, A} - g_{38A} - 27t_{4, B} = 1$$

Case:2 Let a = 3A, b = B

The corresponding solutions of (1) are

$$x = x (a, b) = 234A^2 - 9B^2$$

$$y = y (a, b) = 78A^2 + 3B^2$$

$$z = z (a, b) = 18 AB$$

Properties:

1.
$$z(A(A+1), 1) - 18 P_A = 0$$

2.
$$y(A(A+1), B(B+1)) - 78 P_A^2 - 3P_B^2 = 0$$
.

3.
$$x(A,A) - 225t_{4,A} = 0$$

4.
$$z(A,A) - 18t_{4,A} = 0$$

5.
$$y(A, B) - 78t_{4, A} - 3t_{4, B} = 0$$

Case: 3 Let
$$a = 3A$$
, $b = 3B + 1$

The corresponding solutions of (1) are

$$x = x (a, b) = 234A^2 - 81B^2 - 54B-9$$

$$y = y (a, b) = 78A^2 + 27B^2 + 18B + 3$$

$$z = z (a, b) = 18A + 54AB$$

Properties:

1.
$$x(A, A) - 153 t_{4, A} + 2 g_{27A} \equiv 0 \pmod{10}$$

2.
$$y(B(B+1),1) - 78 P_B^2 \equiv 0 \pmod{48}$$

3.
$$z(A(A+1)) - g_{9A} - 54P_A = 1$$

4.
$$y(A, B) - 78 t_{4, A} - 27 t_{4, B} - g_{9B} \equiv 0 \pmod{4}$$

5.
$$z(A, A) - 2t_{56, A} - g_{35A} = 1$$

3. CONCLUSION:

In this work, the ternary quadratic Diophantine equations refereeing a conies is analysed for its non - zero distinct integral points. A few interesting properties between the solutions and special numbers are presented. To conclude, one may search for other patterns of solutions and their corresponding properties for the cone under consideration

4. REFERENCES:

- I. Dickson, L.E., History of Theory of Numbers, Vol.2, Chelsea Publishing Company, Newyork, 1952.
- II. Gopalan, M.A., Pandichelvi, V., Integral solutions of ternary quadratic equation z(x + y) = 4xy, Acto ciencia Indica, Vol. XXXIVM No.3, 1353-1358,2008.
- III. Gopalan, M.A., Kalinga Rani, J., Observation on the Diophantine equation $y^2 = Dx^2 + z^2$ Impact J.Scitech; Vol(2), 91-95, 2008.
- IV. Gopalan,M.A.,Pandichelvi,V.,On ternary quadratic equation $x^2 + y^2 = z^2 + 1$, Impact J.Sci tech.,Vol.2(2),55-58, 2008.
- V. Gopalan, M.A., Vidhyalakshmi, S., and Kavitha, A., Integral Points on the homogenous cone $z^2 = 2x^2 7y^2$, Diophantus J.Math.,1(2),127–136, 2012.